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ABSTRACT - The JPL Micro-Precision Interferometer (MPfl is a testbed for
studying the use of control-structure interaction and vibration isolation
technology in the design of precision space-based inter ferometry. A layered
optical control and vibration isolation architecture will be used to achieve the
interferometer system requirements in the nanometer range. An important aspect
of designing, predicting and implementing the optical control and disturbance
compensation schemes for such a system is the need for high fidelity, test-verljled
analytical structural models. This paper focuses on the new approach
implemented to achieve a high-fidelity model for the MPI structure. Pre-test
analysis, modal testing, and model updating are summarized for a series of tests
at both the component and full system levels. Examples of optical predictions

. from structural models will be presented.

1. INTRODUCTION

The high precision requirements on the stability, pointing and measurement accuracy of fiture space
interferometry missions will pose great challenges for analysis and modeling research. In particular,
the high imaging resolution of future interferometry space missions will require a 10nm RMS
control of the optical path length over a 10m baseline structure. Hence, these complex missions will
require new strategies to integrate structural, thermal, optical and control parameters into unified
models of large flexible space structures. Furthermore, these integrated models need to be so
accurate as to predict low gravity broad-band nanometer-level optical responses due to micro-g
dynamic disturbances and mini-Kelvin temperature fluctuations. These concerns we especially
critical for problems involving optical performance prediction, vibration suppression, sensor and
actuator placement and structural optimization, Tools are being developed at the Jet Propulsion
Laboratory (JPL) in support of high fidelity predictive modeling of opto-mechanical  systems. At the
core of this effort is the Integrated Modeling of Optical Systems (IMOS)  a Matlab-based  software
which integrates structural, control, optical, and thermal capabilities into a single working
environment [MIL97].

More specifically, a methodology is proposed for testing, modal identification and model
correlation of complex structures which are assembled in an evolutionary manner. The
methodology prescribes initial testing of a base structure without any attached components. The
physical properties of the base structure FEM model are updated from the experimental modal
properties using a Bayesian Estimation Technique (BET) [LEV92]. The BET is implemented in
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MATLAB using IMOS functions, As components are added onto the base structure, additional
tests are performed, A testing and analysis approach is proposed which enables estimation of the
physical parameters of the components alone. Furthermore, improvements to the original BET
implementation have been made which contribute to higher fidelity models and more efficient
computational times. These improvements include: a model reduction option based on
Component Mode Synthesis (CMS) to increase the computational efficiency of the BET; a Line
Search Algorithm (LSA) which accelerates the convergence of the BET; a modal expansion
technique which can expand the test mode shapes to the model degrees of freedom, but to a
higher accuracy than predicted by the model; and an error localization technique based on element
modal strain energy errors (EMSEE) which can locate those elements within the model which are
the most inaccurate, either because of deficient model form or of incorrect parameter values.

The paper will discuss in more detail the approach and benefits of using the new mode shape
expansion and model error localization. It will then be shown how these new methods were
combined with global and component modal testing and identification to achieve an accurate
structural model. Experiments conducted on the JPL 7m x 6.3m x 5 .5m Micro-Precision
Interferometer (MPI) Testbed Bare-Truss and Phase II configurations are used to evaluate the
accuracy of the predictive models. Optics are then incorporated into the improved IMOS
structural model, The accuracy of the integrated opto-mechanical model of the MPI testbed will
then be demonstrated by comparing open-loop optical prediction to on-board disturbances, such as
reaction wheels, with actual experimental measurements.

2. MODEL UPDATING STRATEGY FOR EVOLUTIONARY STRUCTURES

2*1. In-Situ Component Testing
Typically, budget and time constraints do not allow to test the components separately prior to the
integration to complex opto-mechanical structures. An in-situ testing approach is proposed in
which the components are tested in their integrated configuration on the MPI. In the in-situ
component tests the components remain attached to the main structure, but the component
response cannot be isolated from that of the main structure. The in-situ component test is
conducted in the identical manner as a standard modal test using FRF measurements.
Accelerometers are distributed throughout the main structure and the components, and multiple
excitation locations can be used, The modes that are identified are those of the coupled
component/structure system, In the model updating phase, it is assumed that the FE parameters of
the base structure are correct, and that only the FE parameters of the components are uncertain.
Sensitivity methods can be used to update the physical parameters of the FE model.

Experimentally, the number of frequency response functions (FRFs) measured for the in-situ
component tests is much larger than those required for the other test options, since detailed
information of both the component and the structure is necessary to properly identifi the modal
behavior of the coupled system. Hence, the modal identification and the parameter estimation
algorithm with the in-situ component test may become computationally  intensive since many FRF
measurements are used in the modal identification phase, and because the FEM model must
include both the main structure and the components. The computational size can be decreased by
using a model reduction technique in the parameter estimation algorithm.

2.2* FEM Model Updating Approach
The standard process for obtaining a high fidelity model of a structure is to perform dynamic tests,
to extract the measured modal parameters, and to then improve the FEM model so as to reduce the
error between the measured and the analytical dynamic properties. The largest source of error in
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.* this process is in the last step, which is also known as model updating. Model updating techniques
fall into two broad categories. Optimal methods use linear optimization methods to change the
coefficients in the already assembled FEM mass and/or stiffness matrices, Sensitivity methods
apply non-linear optimization schemes to change the physical parameters, such as material and
geometric properties, used in the assembly of the FEM mass and stiffness matrices,

A comparative study of many optimal model updating methods performed at JPL has shown that
optimal methods are more computationally  efficient, but does not always lead to physically
realizable systems since the positive definite properties of the mass and stiffness matrix can not be
enforced [PEC96].

Although sensitivity methods, such as BET, always lead to physically realizable systems, these
methods are very computationally intensive because of the large number of physical parameters
needed to form the FEM model, Sensitivity methods also suffer from numerical problems such as
convergence to a local minimum, and non-unique trade-offs between the optimized physical
parameters. These short-comings can be compensated by reducing the number of physical
parameters that are simultaneously updated. This is accomplished by performing phased tests on
the structure as components are being added, and by devising a strategy which would allow to
detect from the measured data which areas in the model are most likely to be responsible for the
errors. In the MPI application, a fill modal test was performed on the bare structure to accurately
model the truss only. In Phase II, when optical components had been added to the bare-truss, a
second modal test was performed, and only the parameters of the new component model were
updated under the assumption that the base model was correct. The results are explained in more
detail in a later section.

.
The current numerical implementation of the BET has also been improved by the addition of a
line search algorithm which allows for faster convergence to a minimum, and by incorporating a
component mode synthesis algorithm to reduce the model to only those components which are
being updated, Furthermore, sensitivity methods can only improve on the value of the physical
parameters for a defined model form. Examples of model form errors include using the wrong
type of element to describe the physical behavior (e.g., rod elements instead of beam elements), or
assigning the wrong boundary conditions or nodal constraints. Hence, model error localization
schemes should be able to locate both model form errors and physical parameter value errors, It
has been concluded that the best approach is to expand the mode shapes and to compare the errors
at the model element level.

2.3. Bayesian  Estimation Technique (BET)
The sensitivity method selected for the MPI model updating effort is the Bayesian Estimation
Technique described in [LEV92] and originally developed by Hasselman  et al. [HAL91] as the
computer code Structural System Identification (S SID). BET is a generalized least-squares
estimation method which uses statistical information (i. e., the covariance matrix S) to weigh the
parameters of the objective function, BET uses a linearized approximation of the relationship
between the structural parameters and the modal response parameters. The cost functional, J, is
the weighted sum of the residuals of the test and model eigenvalues,  A, and the difference between

the ith estimated parameters, r~, from their original estimate, r. :

J = (~ - rO)7” [S,, ]-’ “(r, - r,)+ (~e,$,  - &de, )T Q [Sul-’ “(&,, – ktit-,) Eq. 2-1

The first term in the cost fictional is necessary to keep the problem well behaved, essentially
requiring the estimated parameters to stay near the original estimate.
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The BET used in SSID was modified to include an LSA for more efficient choice of step size. In
other words, the BET was used to determine a descent direction:
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and this descent direction was then passed to an LSA that determined the optimal step size, a.
The LSA used was that of Fletcher [FLE87], The algorithm essentially brackets the step size and
successively moves the brackets together until an acceptable step size is reached. The physical
parameters were then updated according to:

r1+1 =r, +c, n Eq. 2-3

2.4. Component Mode Synthesis Estimation (CMS) Algorithm
To reduce the size of the model to be updated, the estimation algorithm was implemented using a
CMS Technique, initially proposed by ,Hurty [HUR64], and later improved by Craig [CRA8 1].
The algorithm is illustrated in Fig. 1. The CMS technique is used to remove from the estimation
loop the portion of the model not sensitive to the parameters being updated (i.e., the main
structure). Essentially, a model of the main structure is built, solved, and truncated (according to
modal frequency) before beginning the estimation loop. The component model is built inside the
estimation algorithm loop, as it depends on the estimated parameter, The truncated main structure
model is synthesized with the component model in the algorithm loop and solved for the fill
modes and mode shapes. From these eigenproperties, and the “mass and stiffness sensitivities, the
eigenproperty sensitivities are calculated, With the synthesized eigenproperties, eigenproperty
sensitivities, and the expanded test eigenproperties, the descent direction and the step size are
found, resulting in an update of the estimated parameter.
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l+lgure 2-1 Parameter Estlmatlon Algorithm Implemented with Component
Mode Synthesis Technique.

2.5. Mode Shape Expansion Techniques
Physical and financial constraints typically limit the number of degrees of freedom (dofs) monitored
during a dynamic structural test. These limitations include laboratory or field restrictions, such as
available number of accelerometers and/or data channels, structural constraints, such as



inaccessibility of certain parts of the structure, or flight project constraints for on-orbit identification.
However, it is often desired to assess the modal response of the fill strycture  at all its dofs. The most
common and least demanding reason is for mode shape visualization, Other reasons include
correlation of test and analysis results at all the dofs represented in the fill Finite Element Method
(FEM) model of the structure, As stated above, model updating techniques would benefit from the
added information provided by mode shape at all dofs. The full mode shape is also useful in

predicting the response at unmeasured dofs for structural integrity and reliability assessments to
dynamic loads such as earthquakes, impacts or explosions. Control needs include computation of the
strain energy distributions for optimal darnper and active member placement in vibration attenuation
problems. In addition, the tuning of Multiple Input/ Multiple Output (MIMO) control parameters and
gains also requires an accurate model at all dofs.

Several methods for mode shape expansion have been investigated [LEV96]. The most popular
methods use an a-priori structural or modal model together with the equations of motions to obtain
either a direct solution or an orthogonal projection. Each approuch  can also be formulated as
constrained optimization problems. To account for uncertainties in the measurements and in the
prediction, a new expansion technique based on least squares minimization with quadratic inequality
constraints (LSQI) has been proposed.

Each modal expansion technique has been filly evaluated with experimental data obtained on the
Micro-Precision Interferometer testbed, using both the pre-test and updated analytical models. The
studies involve ttilng  a subset of the actual set of instrumented dofs, and veri~lng  the accuracy of
the expanded prediction. The robustness of these methods has been verified with respect to
measurement noise and model error, It has been shown that the proposed LSQI method has the best
performance and can reliably predict mode shapes, and can be used to locate damage elements, even
in very adverse situations. A new LSQI algorithm has since been developed which significantly
decreases the solution time and the computational requirements of the expansion process [LEV97],

A summary of the findings is presented herein, In the following derivation, “’” refers to experimental
data, “--” is the expanded solution, “a” is the set of measured dofs, “o” is the set of omitted dofs, and
‘~’ is the full set of dofs in the analytical model such that J= a + o. The four expansion approaches
investigated for their accuracy and robustness using actual MPI measurements are the Guyan
expansion, the Kidder expansion, the Procrustes  expansion, and the new LSQI expansion.

The Guyan or static expansion, based on the Guyan reduction method, assumes that the inertial
forces acting on the non-measured dofs can be neglected with respect to the elastic forces
[GUY65].  This leads to an exact analytical relationship between the mode shapes at the measured
and unmeasured dofs. Using the experimental mode shape data obtained at the instrumented
dofs, &, the predicted mode shapes at the fill set of dofs, ~fi, for the i’~ mode can thus be
inferred from:

Eq, 2-4

where ~J is partitioned into measured ~, and unmeasured dofs &. Alternatively, the equivalent

constrained minimization problem finds the expanded mode shape Zfi which minimizes the total

strain energy of mode i, such that the predicted mode shape equals the test values at the measured
dofs.:



Eq. 2-5

Equations 2-4 and 2-5 yield identical solutions [LEV97]. However, Eq. 2-4 only requires one matrix
inversion, where as Eq, 2-5 requires two, Eq, 2-4 is thus preferred for its computational efficiency.

The Kidder expansion method is based on the dynamic reduction proposed by Kidder [KID73]. The
inertial forces are no longer assumed to be negligible, leading to an exact solution of the mode
shapes at the unmeasured dofs, $Oi, as a function of the test modal frequency, fi,, and the test mode
shapes at the measured dofs, +ai:

&j .
[

~ai

)
Eq. 2-6

[Km - ~,z Mm]-]  [Km - ~? Mm] &n,

Similar to Eq. 2-5, a constrained minimization form inspired from the Kidder method is proposed:

However, Eq. 2-6 is preferred since it only involves one inverse and avoids the ill-conditioning
problem associated with inverting near-singular matrices for tii = ~i.

Kidder’s method is computationally  more expensive than the Guyan expansion method, since the
dynamic stiffness matrix (I&- co?M~) must be factorized for each mode i. With the Guyan method,
the partition matrix &is only factored once and can be used to expand any mode shape.

Smith and Beattie propose an expansion method expressed as a constrained least-squares
minimization [SM190]. This method expands the experimental mode shapes by orthogonal
Procrustes  transformation of a set of p experimental eigenvectors 5P into the space spamed by

the set of p predicted analytical eigenvectors cD, at the measured dofs a:

minpW @.P - @aP PPP ~ subj”ect  P~P PPP = I
Eq. 2-8

G@ = @@ Ppp

The Procrustes transformation is a mathematical technique which rotates two sets of same dimension
into each other, The orthogonal transformation matrix PPP is computed for the p experimental and
paired analytical mode shapes at the a measured dofs through a singular value decomposition. The
Procrustes transformation preserves mass orthogonality  and is numerically efficient. However, it
requires correct pairing between the analytical and experimental eigenvectors, and selection of a set
of measurement locations which filly spans the space of the p modes used for the expansion. Smith
has attempted a variation of the Procrustes orthogonal expansion method which retains the measured
degrees-of-freedom (dofs) values and transforms only the unmeasured dofs. This modification was
not recommended since it resulted in a loss of orthogonality in the eigenvectors, and a more jagged
appearance in the mode shapes (e.g., “loss of smoothing”).

Although Procrustes’ method is more computationally  efficient in expanding mode shapes than the
Guyan and Kidder method, it does require the analytical eigenvalue  problem to be solved. This may
be computationally  demanding for large models.

The constrained minimization versions of the Guyan and Kidder expansion methods impose that the
value of the expanded mode shape at the measured dofs, &, identically equals the measured values

~, (Eqs. 2-4 and 2-6). Existing errors in the experimental values propagate errors in the estimates

of the mode shape at the unmeasured dofs ~,, Furthermore, ordinary experimental errors may
impede optimization problems with equality constraints. When the equality between the measured



data and the optimized data cannot be met individually at every dofs,  the constrained optimization
problem may either have an impossible solution or the wrong solution. Although penalty methods or
generalized least-squares methods could be formulated to incorporate uncertainties resulting from
experimental or analytical errors, the solution is dependent on the value of the relative weighting
parameter S, While S is theoretically related to the covariance  of the measurement and model errors,
its correct value is difficult to assess,

To bypass these weaknesses, the modal expansion problem can be reformulated as a quadratic
minimization with the understanding that error in the expanded mode shape exists, and that it is
bounded by the expected measurement error. Mathematically, this is a least-squares minimization
problem with quadratic inequality constraints (LSQI) of the general form:

min$lA~ - b12 subject to IB$ - d12 s a ~12 Eq. 2-9

The immediate advantage of the LSQI formulation is to allow convergence within a domain of
probable solutions, while taking into account uncertainties associated with experimental errors.

Several LSQI formulations for mode shape expansion have been proposed and investigated
[LEV94]. When tested on actual data, the LSQI counterparts of the constrained optimization form of
the Guyan and Kidder methods (Eqs. 2-5 and 2-7) gave answers as accurate as the ones predicted by
the direct solutions (Eqs, 2-4 and 2-6), with no computational advantage. Furthermore, it was found
that closely matched experimental and modal frequencies resulted in quasi-singularities and ill-
conditioning of the objective function. .

To circumvent this problem, the objective fimction  is redefined as the quadratic norm of the modal
residual force. With this new formulation, the LSQI problem now finds the optimal ~fi which

minimizes the modal residual force such that the quadratic error between the expanded mode shape
and the experimental mode shape at the measured dofs is within the bounds expected from
experimental error.

Eq. 2-10

As a ct~O, LSQI indirectly solves the eigenvalue  problem for the given experimental modal
frequency and mode shape at the measured dofs.

Mathematical techniques for solving this problem have been published and are easily
implemented [GOL83]. However, standard solution techniques for the LSQI method involve a
generalized singular value decomposition of the fill iVxN dynamic force matrix A, and the axN
partitioning matrix B, which require O(N9 operations. This can become prohibitively large when
expanding modes of structures with over 1000 dofs. A new LSQI algorithm is proposed, which takes
advantage of the fact that the number of measured dofs, a, is much less than the number of dofs in
the model [LEV97]. It is shown that this new method simultaneously diagonalizes matrices A and B
as the sum of two orthogonal projections. The improved algorithm requires O(Na+a  2, operations,
and is made even more efficient by using a sparse matrix formulation. When applied to the test data
expanded from 408 to 1573 dofs, the computational time on a Sun Sparcstation 10 was reduced from
3 days to 1 hour,

2.6. Mode Shape Expansion Validation

2.6.1. Performance Metrics
To assess the error between the expanded and actual mode shapes a first error metric is proposed
which evaluates the relative quadratic point-to-point error at all dofs J between the predicted
expanded mode shape $Ji and the actual measured mode shape I$Ji for each mode i:
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In comparing mode shapes at each point, normalization of the eigenvectors is achieved by least
squares fit of the expanded mode shape to the reference mode shape. Alternatively, the mean
cumulative error in the mode shape as a function of the mode n can be used to determine the
modal number at which the expansion methods start to break down :

Eq, 2-12

The orthogonality properties of eigenvectors, as inferred in the Modal Assurance Criteria (MAC),
can also be used as a performance metric. The MAC matrix betsveen the expanded and analytical
eigenvectors is defined as:

Eq. 2-13

The MAC is used to veri~ the orthogonality between the expanded mode shapes and the actual
mode shapes measured at all dofs, The mass cross-orthogonality  condition (MX) is also a potential
performance metric. However, when applied to this case study, MX provided the same information
as the MAC. Both the MAC and the MX are widely used model correlation indexes in the aerospace
trade.

It is relatively straightforward to establish that the MAC (Eq. 2~1 3) is proportional to the square of
the normalized difference between eigenvectors (Eq. 2-11). For example, a norm difference of 10VO

between two eigenvectors is equivalent to a MAC of approximately 0.99. Thus the norm error is a
significantly more sensitive measure of performance than the MAC, and will be used in the
following experimental evaluation.

2.6,2. Performance to Ideal Measurement and Updated Model
The performances of the Guyan method, the Kidder method, the Procrustes  method and the LSQI
method have been extensively evaluated with respect to measurement error, model error, and
measurement location [LEV96]. Only the most significant results are presented herein. The
expansion is performed from a subset of the 240 dofs measured during the dynamic tests, A
particular set of instrument location is referred to as “ase[5”. It contains 12 dofs, the location of
which are optimally selected using a modal kinetic energy criteria, Ase~5 provides enough
information to identi~ the first nine modes, with the exception of mode 6 which is not properly
represented. The expansion of missing mode 6 will thus provide a measure of the methods’
robustness to unmeasured modal information, The 240 dofs locations represent 3 dofs at each of the
80 node balls fo,fing the truss structure. The fill FEM model used for the expansion also has 240
dofs, in which each dof matches a test location, The expanded mode shapes are then compared to the
actual experimental values using the cumulative error performance metric for the first nine modes
(e.g., G(9) in Eq. 2-12).

The expansion methods are first investigated for their reliability and petiormance  when all
experimental and analytical conditions are favorable. The expansion is executed with the updated
(i.e., “ideal”) analytical FEM model and mode shapes, from a subset of the high quality experimental
data measured on the MPI. The measured data is not corrupted by additional noise. Here, the twelve
ase/5 locations have been retained as the “measured set”, and are expanded to the fill  240 dofs
recorded during the actual test, The error of the ideal analytical model with respect to the fill 240
dofs measurement set is also included in Fig. 2-2 for reference. Based on the comparison between
two independently performed modal tests, mode shape errors below 15% are acceptable and within



the experimental accuracy of the measurements [LEV94]. The Guyan method can only expand the
first 2 modes properly, after which the estimates are unreliable. To get suitable expansion with the
Guyan method, a minimum ratio of 3 to 4 accelerometers per mode is required - as commonly
practiced experimentally. Lower ratios of instrumented dofs to modes and better performance can be
achieved with the Procrustes, the Kidder and the LSQI expansion methods,
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Figure 2-2 Mea cumulative mode shape error -Expansion from 12 dofs(a.set5) to
240 dofs with updated FEM model and no additional measurement noise.

The Kidder method generates expanded mode shapes which have errors of only 10% for seven of the
nine modes, but mode 6 could not be identified, Mode 6 is also the mode which is not captured by
the accelerometer location. Hence, under ideal experimental and analytical conditions, the Kidder
method can correctly expand all modes measured by the accelerometer location set. The Procrustes
expansion method can predict mode 6, but only modes 1 and 3 have acceptable error levels. The
mediocre results are explained by the fact that all nine modes are expanded simultaneously from the
initial 12 dofs subset. It was observed that the Procrustes method is very sensitive to the number of
simultaneously expanded modes and to the set of measurement locations,

The LSQI expansion method performs the best across all modes. It is capable of predicting
unmeasured mode 6 better than the Procrustes  method, Foremost, it is the only expansion method
investigated so far which results in estimates which are as accurate as the fill set of measured mode
shapes.

2.6,3. Sensitivity to Measurement Error And Model Error
There are many sources of noise in the processing of mode shapes: accelerometer accuracy, wire
mass and darnping, shaker coupling, method of excitation. An additional error can be introduced by
the modal identification method itself, It suffices to say that the measured mode is never pristine, ‘It
could be desirable, therefore, to have a mode shape extrapolation procedure that is not only
insensitive to noise, but that can filter it out too.

For lack of a better model, the measurement noise is represented as an additive random error
superimposed upon the true mode shape. Future work should investigate the effect of non-Gaussian
measurement errors representative of a defective sensor or a consistent operator error. In the
following, an additional 25% error was added to the experimental mode shape data, It is recalled that
the 15°A error is the level expected from standard experimental procedures. The mean expansion
prediction is inferred by averaging 30 Monte Carlo simulations. The expansion is from aset5  with 12
dofs up to the full 240 dofs of the model.



The FEM model plays an important role in the regularization of spurious information, the filtering
out of the measurement error, and the prediction in the event of insufllcient  information. This is
especially true of the Kidder and the LSQI methods which rely heavily on the fill dynamic
equations. In the following, both distributed (i.e., global), and localized errors are investigated,

Distributed errors in the analytical mass or stiffness matrix, such as errors resulting from the uniform
structural properties (e.g., mass density or modulus of elasticity), only scale the eigenvalue  problem
by a multiplicative constant, and have little influence on the modal expansion prediction. Another
form of global model error can be introduced by deficiencies in the model form, as would typically
occur in a pre-test model. To this effect the actual pre-test model of the MPI is used for
demonstration, It is composed uniquely of rod elements, and can only approximately predict the first
4 modes. The “ideal” updated model used in the previous expansion analyses is constructed uniquely
of beam elements, and can accurately predict the first nine modes.

Spatially localized model error, such as would occur from local errors in the model form or
properties, or from changes in the actual structure resulting from fatigue or damage are also expected
to affect the predictability of the expanded mode shapes, To simulate this situation the stiffness of
the longest strut in the pre-test model, connecting the tower to the optics boom, is decreased by half.
This only changes the pre-test  frequencies of modes 5 and 6 by less than 3’XO, while keeping all other
frequencies almost the same, However, the effect of this localized error on the analytical mode
shapes is significant, as shown in Fig. 2-3, where a major jump for mode 5 and 6 correspond to a
300% increase in the mode shape error relative to the “undamaged” pre-test  model.

The petiormance  of the expansion methods is assessed for the combination of global and local
modelling  error with an additional 25°/0 error in the measured mode shape values, The results are
summarized in Fig. 2-3. The solid lines represent the accuracy of the different forms of the MPI
model with respect to the true test data at all dofs, and the dashed lines represent the expanded mode
shapes from ase~.5  to the full 240 dofs using the damaged pre-test model and noise corrupted
measurements.
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Figure 2-3 Mean cumulative mode shape error - Expansion from 12 dofs (aset5) to
240 dofs with damaged pre-test FEM model and 25% additional
measurement noise,

As expected, adding measurement noise to the damaged pre-test  model significantly worsens the
performance of all the expansion methods (Figs, 2-2 and 2-3), In the presence of both model error
and measurement noise, the Guyan and the Kidder method perform equally poorly, and generate



mode shapes which are worse than predicted by the damaged pre-test model. The Procrustes  method
performs better than the Guyan and the Kidder methods, especially at the higher modes, and can
predict the lower modes to the same level of accuracy as the noise contaminated data. However, the
Procrustes method is very sensitive to measurement dof location and selection, as well as to the
number of simultaneously expanded modes, In an actual situation this is a big disadvantage as the
real solution is not known, and the variation in the error can be great.

The LSQI method pefiorms exceptionally well. It generates mode shapes which are only off by 15V0,
although the data used is contaminated by 250/. noise and the model has the wrong form and a
damaged member. Only the LSQI method is capable of expanding mode shapes to an equal or
greater level of accuracy than the measured data, even when the original data is corrupted by
significant amounts of noise. In fact, for moderate amounts of measurement noise, e.g., less than
25%, the first nine modes expanded with the LSQI method from only 12 instrument locations are
almost as accurate as the noise-free mode shapes measured at all dofs.

2.7. Model Error Localization Techniques
The error metrics discussed above are global metrics describing the total error throughout the whole
set of dofs. Errors can also be evaluated at the local  structural element level by the strain energy
distribution associated with each element “s and with each mode i. Analogous to the mass cross-
orthogonality which measures the accuracy of the expanded mode shape with respect to the FEM
mass matrix M, the element modal strain energy verifies the fit of the i’h expanded mode shape at the
dofs of elements with respect to the FEM element stiffhess matrix  k$,. In the following definition,
~ is the Sth element modal strain energy for the expanded mode shape, which is normalized with
respect to the total strain energy for the i’h mode,

14
A large modal strain energy for a particular element and

Eq. 2-

a given mode shape signifies that the
element stores a large proportion of-the mode shape’s strain energy, Thus, finding~hose elements
in which the differences between the measured and the analytical element modal strain energies
are the largest provides a systematic criteria for the selection of the elements most responsible for
the model error. The element modal strain energy error (EMSEE) between the analytical (ilS and the
expanded ~ identifies the discrete dofs where the expansion does not agree with the model. Such
errors typically result fkom localized modelling  errors or actual structural damage,

EMSEE calculation uses IMOS FEM capabilities to estimate modal strain energies in rod, beam
or plate elements. EMSEE also takes into account model reductions from IMOS rigid body
elements (RBE). For a single MPI mode shape (1573 independent dofs), EMSEE calculations for
all elements require 15 minutes on a Sun Sparcstation 2.

The mode shapes expanded with the Guyan, Kidder, Procrustes and LSQI method are compared for
their capability to locate darnaged or ill-modeled elements. The error localization criterion is
implemented on the “damaged” model described above. For the purpose of this analysis, the
measured test data contains the (rue information about the state of the structure, and the model
includes a localized error in one of its members. The element whose stifiess  is decreased by half is
labeled #167 in the finite element model. The measured mode shapes describing the [rue state of the
structure are expanded from ase15 (12 dofs) up to the fill 240 dofs using the “damaged” model, for
the Guyan, Kidder, Procrustes and LSQI methods. The element modal strain energies (Eq. 2-14) are
then computed for both the expanded mode shapes and the analytical mode shapes predicted by the
“damaged” model using the darnaged element stiffness matrix k,,. The two element strain energies



are then compared for each mode i. The damaged or ill-modeled elements are those that have the
highest discrepancy between the analytical and the experimental modal strain energies.

The results are listed in Table 2-1, in which the correctly identified element has been shaded out. The
first column lists the ideal case where the element modal strain energies of the undamaged model is
compared to those of the damaged model, For 8 out of the 9 modes, element#167 has been correctly
identified as the damaged element, proving that the element modal strain energy is an appropriate
error identification criterion. The damaged element was not identified at all with the Guyan
expanded mode shape, and only once with the Kidder and Procrustes expanded mode shapes,
However, the LSQI expanded mode shape accurately identified the damaged element in 4 out of the
9 modes. Thus, the LSQI mode shape expansion method is also the most appropriate expansion
technique for identifying damaged members or localized model error, even in the presence of
measurement noise.

MODE #

1
2
3
4
5
6
7
8
9

UNDAMAGED GUYAN KIDDER PROCRUSTES LSQI

MODEL

124 18 26 124
m 15 137 55 168
w 137 120 109 137
w 38 124 109 w

77 m“ 166 m
157 62 157

k 217 64 h
217 3 157 137
~36 26 209

Table 2-1. Element numbers with the highest modal strain energy
errors relative to the damaged model, The shaded box is
damaged element #167 with -50% stiffness.

3. APPLICATION ON THE MPI
The Micro-Precision Interferometer (MPI) testbed at the Jet Propulsion Laboratory (JPL) is a lightly-
damped truss-structure comprised of two booms and a vertical tower with dimensions of 7rn x 6,3m
x 5,5n4 and weighing210 kg. It is composed of 250 aluminum struts connected to 80 node balls. The
primary objective of the MPI is to perform system integration of vibration attenuation and optical
control technologies to demonstrate the end-to-end operation of a space-based optical interferometer
~EA97].  Accurate modeling and response prediction are essential for the successt%l
implementation of these control methodologies and optical metrology functions.

3.1. MPI FEM Models
Consistent with the proposed strategy, a first modal test and BET model updating effort was
performed on the MP1 tested in its bare-truss configuration [LEV92]. Also during this effort,
individual struts were tested to extract the correct model form and physical properties for the
components. It was concluded that to capture the proper bending behavior, each strut needed to be
modeled by five individual beam elements. The bare-truss MPI model was accurate for the first 14
flexible body modes (<60  Hz) and contained over 10,000 dofs, However, the model size needed
to be reduced to less than 480 dofs as to allow for the additional models of the optical
components. A model reduction scheme was devised such as to find the optimal physical
properties of the strut modeled as a single beam element with respect to the first and second
bending modes of the high fidelity five-element strut model. This optimization was performed for



each of the twelve different strut assemblies comprising the MPI bare-truss. After performing the
element reduction, the 480 dof reduced IMOS MPI bare-truss model was accurate for the first ten
flexible body modes up to 50 Hz.

Figure 3.,1 Micro-Precision Interferometry  (MPI) testbe~
configuration Finite Element (FE) model.

fl phase II

Just as the MPI Testbed hardware had evolved from Phase I tp Phase II of its delivery, so was it
necessary to add component models to the FEM model of MPI bare-truss (Fig. 3-1). These
components include two optics plates, an active optical delay line and its support structure (a.k.a.,
trolley), two siderostat  mount structures, and a payload plate. The phase 11 model was
implemented on a Sun Sparcstation  10 using the IMOS software package, where it could easily be
integrated with optical and controls models in the future. Furthermore the Sparcstation  and IMOS
were both available resources, After the component models were added, the Phase II model had
1973 dofs, of which 1573 were independent dofs.

I 3.2. MPI In-Situ Testing.
The component models having been added to the bare-truss MPI model, analytical mode shapes
and FRFs are predicted for the MPI Phase II configuration. Modal tests were performed on the
MPI structure, with its added components using the in-situ component test approach. The tests
were performed with a modest suite of test equipment (shaker, accelerometers, and DAS). From
the resultant test data, experimental mode shapes were identified at the instrument locations (i. e.,
test dofs). The LSQI modal expansion technique was applied in order to expand the mode shapes
to the model dofs. Estimation of the error between the expanded experimental mode shape and
the predicted a@ytical mode shape using the Element Modal Strain Energy Error (EMSEE)
discovered model form errors and provided a selection criteria for determining the physical
parameters to be updated.

The Phase 11 MPI was tested in a free-free configuration suspended at 3 points by an assembly of
springs and bungee cords, The bungee cords were added to increase the suspension stiffness and
to damp out the troublesome suspension surge modes, The in-situ test involved a single shaker
location and multiple, roving-accelerometer measurements throughout the MPI, with emphasis on
the trolley and plate components.

The shaker used for the experiment was a low-level Bruel and Kjaer l-Newton shaker, attached to
the structure by a 10-inch metal stinger, which was itself connected to a Dytran 10-pound load
cell. A total of 424 output dofs were recorded using roving micro-g Kistler tri-axial
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accelerometers. The tests were controlled with an Hewlett-Packard 6066A 16-channel DAS on a
486 PC host computer. The tests were performed using burst random inputs with a bandwidth of
2 Hz to 102 Hz.

3.3. MPI Modal Identification and Expansion.
Modal identification was performed using SDRC/IDEAS  Modal software package on a
MicroVAX. The 424 test FRFs were used to identifi  the modal parameters of the MPI testbed.
Various curve-fit options were available in IDEAS, each capable of producing global estimates of
modal frequencies, damping, and mode shapes. The Polyreference method was used because it
provided a modal confidence factor for each estimated mode, which facilitated the elimination of
fictitious computational modes,

The LSQI expansion technique was applied to the first 13 flexible body mode shapes up to 45 Hz.
The test mode shapes were expanded from the 408 measured dofs to the 1573 independent dofs of
the Phase II MPI model. Expansion of each mode originally took roughly 3 days in IMOS on a
Sun Sparcstation 10, The expansion time was reduced to roughly one hour, a 70 to 1 reduction,
with the improved LSQI algorithm,

Correlation between the test and analytical mode shape is evaluated with the Mass Cross-
Orthogonality  (MX), T& MX weighs the modal correlation proportionally to the mass
contribution at each dof. Correlation between the measured modes and analytically predicted
modes for the pre-test model are listed in Table 3-1. Only modes 1, 2 and 5 are properly
correlated with MX greater than 90 ‘A and with frequency errors less than 2’Yo,

3.4. MPI Phase II Model Updating
The accuracy of the stages of the Phase II MPI FEM model are shown in Table 3-1. After the new
components were added to the model but prior to any adjustment to fit the test data, only the
lowest two flexible body modes were modeled accurately (<1 OHZ). After evaluating the model
with the EMSEE, several model form errors were found. These were human errors in modeling of
the trolley flexures  and the trolley truss elements, and lack of fidelity in the modeling of the trolley
flexures. In particular, the flexures supporting the optical delay line had been oriented about the
wrong axis. A second model form error was very subtle, yet contributed to inappropriate bending
mechanism of the delay line. The pre-test model assumed that the diagonal elements of the delay
line had neutral axis about the center of the beam. However, because of the welding of the joints,
the neutral axis was in effect shifted, After these model form errors were corrected, significant
improvement was made in the accuracy of the model, with four of the lowest five modes being
modeled correctly. Of the first five modes, the fourth had an acceptable MX, but a large
frequency error of-6.7%.

After implementing the corrections in the model form, EMSEE was applied to select the physical
parameters to be updated. The parameters were then estimated using a BET modified by a LSA
for faster convergence. CMS was used in order to improve the algorithm’s computational
efficiency. The EMSEE was applied to the corrected model, and the optical delay line was still
responsible for the largest source of error, Due to time and finding limitations, only a single
parameter was estimated, The parameter chosen was the trolley truss parameter that significantly
affected the fourth flexible body mode. The fill Phase 11 MPI model was reduced with the CMS
approach down to a single component of the structure, The CMS implementation of the estimation
algorithm resulted in a reduction of the size of the eigenvalue solution inside the loop from 1573
dofs to 503 dofs, corresponding to a reduction in the solution time from 4 hours to roughly 5
minutes on a Sparcstation 10, The error in the eigenproperties resulting from the modal truncation



. of the main structure model whs negligible (modal frequency error < 0.010/0, MX > 99.9°/0 on
diagonals). The parameter estimation procedure resulted in an accurate representation of the all of
the first five flexible body modes (<20 Hz) (Table 3-1 ),

TEST PRE-TEST CORRECTED ESTIMATED
MODEL M O D E L MODEL

MX MX MX
Mode I Freq I Damp Freq I AF test Freq AF test full Freq AF full

# (Hz) (0/0) (Hz) 0/0 dofs (Hz) 0/0 dofs dofs (Hzj 0/0 dofs
1 6.55 0.41 6.58 0.5 0.98 6.56 0,2 0.97 0.90 6.56 0,1 0.90
2 9.39 0.40 9.25 -1.5 0.99 9,10 -3.1 0.99 1.00 9.10 -3.1 1.00

0.27 I 11.6 I -11.2 I 0.69 I 12.1 -6,7 0.96 0.98 ~ _12. 7 -1.5 I.m
3 11.5 0.41 111.21 -2.7 0.71 I 11.4 -0.9 0.97 0.99 I 11,5 0.1 1.00 I
4 12.9
5 19.3 0.48 19,7 2,0 -0.96 19.2 0,5 0.96 0.95 19.3 -0,2 0.96
6 24.1 0.21 23.9 -08 093 23.3 -34 073 028 233 -34 029--- —_ :__ __”________ _.J ___, _____ __ _.. .

24.9 3.2 0.24 24,4 1.2 0,62 0.25 24.4 1,2 0.25
7 2R R n 45 . - - 316 14.0 0.88 0.49 33.6 14.1 0,49
8 33.8 i 0.35 I 35.4 I

----- ..- n 1 I I ““.  ”

4,5 I 0.79 1 34,9 3.2 0,87 0,90 I 34.9 3.2 0.90 I
91’Mi91f)Llll.  l.I. I?OKAS n 67 nml 706 LQ non 1

-“.  . -.. . “.. ” “.” “.”, “.=” u,. ” “.”  “.&”

10 39.8 0.15 38.4 -3.4 0.77 39.2 -1.5 0.86 0.85 39.2 -1.5 0.85
11 41.8 0.19 40,1 -4.2 0.88 40.4 -3.5 0.84 0.89 40.4 -3.5 0,89
12 43.2 0.22 44.2 2.3 0.61 42,6 -1.4 0,39 0,13 42.6 -1.4 0.14
13 44,7 0.29 46.7 4,3 0.48 46.8 4.5 0,65 - 45.3 1.3 -

Table 3-1: Results of in-situ parameter estimation for the MPI testbed. Modes that
showed a significant improvement in accuracy from the previous model are
shown in italics.

A graphical representation of the analytical prediction improvement is shown in Fig. 3-2 for the
FRF between the shaker input and a response location on the optical delay line component
measured during the in-situ component tests, The solid line is the actual measured FRF. Overlaid
on the plot are the predicted analytical FRFs from the pre-test  uncorrected model, the model
corrected for the model form error, and the model which was further improved for physical
property value (“estimated model”). Correcting for the model form errors is the largest contributor
to improving the match between the measured and analytically predicted FRF. Improving the
physical properties for one of the optical components using the BET sensitivity update method, as
represented in the “estimated model”, further accounts for a small shift in frequency. This
demonstrates the importance of identi~ing  model form errors prior to updating physical
parameters.
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4. MPI OPTO-MECHANICAL MODEL VALIDATION
Once the structural model has been updated to match the measured modal properties, optical
component models and control systems are added to the IMOS model for a truly integrated opto-
mechanical model. Extensive testing has been performed on the MPI Phase 11 configuration to
validate the integrated model predictions with actual experimental measurements ~EA97, MEL96].
Disturbances have been applied with a shaker to the actual MPI structure to obtain open-loop and
closed-loop fringe position and optical path length difference (OPD) transfer fimctions.  For
validation of the analytical predictions, these same transfer fi.mctions have also been generated from
the integrated MPI model,

As an example, Fig. 4-1 shows the IMOS geometric layout of the open-loop MPI transfer fimction
between an x-axis shaker force to the stellar OPD output, The measured experimental results are
shown as the solid line in Fig.4-2.  The improvements in the predictions from the pre-test
(uncorrected) model, to the corrected model, and to the estimated model are also shown in dashed
lines. It is seen that for tlis particular example, the identified model form errors identified through
the LSQI expansion technique and EMSEE criteria are the largest contributor to the improved match
between the experimental data and the analytical predictions, Thus, validating IMOS and the
analysis approach as a viable tool for high fidelity predictive modeling.
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Figure 4-2 Test Validation of the Open-Loop Transfer Function Between the
x-axis Dirty Box force Input to the External Metrology OPD.

5. CONCLUSION
A testing and modeling approach has been proposed herein which minimizes costs and schedule
impacts for phased assembly of large opto-mechanical  structures. An in-situ component testing
and identification strategy was implemented on the MPI testbed, The in-situ strategy minimized
the impact of the testing on the hardware delivery schedule, by not requiring that the components
be tested on separate test fixtures prior to integration with the main structure. Similarly, the cost
and complexity of the testing were minimized.

Several mode shape expansion methods have been proposed and investigated, These expansion
techniques fall into three main categories. The first one uses direct solutions of the static and



,’

dynamic equations to obtain a closed-form equation. Thk catego~  includes the Guyan and the
Kidder methods. It is shown that these direct methods can also be written in terms of an
unconstrained minimization problem. The second category uses least-squares methods to minimize
the error between the measured and modeled eigenvectors.  Within this category, the Procrustes
method imposes orthogonrdity  of the mode shapes. The third category formulates the expansion as a
least-squares minimization problem, in which measurement or expansion error is incorporated as a
quadratic inequality constraint,

The trade study demonstrated that the LSQI method based on minimization of the dynamic force
equation and subject to bounds imposed by measurement noise has the best performance. It is
insensitive to moderate amounts of measurement error, and is capable of predicting eigenvectors at
unmeasured dofs with greater accuracy than the noise-corrupted data measured at those locations.
LSQI is the only method which is capable of regularizing global and local model errors, resulting in
mode shapes of higher accuracy than the model originally predicted, even in the presence of
experimental noise. It has also been shown on actual data that the LSQI method was the only
expansion method capable of locating damaged elements in a model. TMs makes the LSQI
expansion method ideally suited for recursive model updating, damage detection and response
prediction technique. A new LSQI algorithm has also been proposed which significantly reduced the
computational requirements of conventional LSQI solution techniques.

The Element Modal Strain Energy Error (EMSEE) criteria was used for element error localization,
The EMSEE allowed for systematic quantification of the model form and element parameter
errors, Use of the LSQI mode shape expansion technique enabled calculation of the EMSEE,
Evaluation of the EMSEE for the identified mode shapes resulted in the discovery of several

model form errors, both human errors and lack of modeling fidelity in certain elements, The
correction of these errors resulted in significant improvement in the model accuracy. Finally,
EMSEE was used to target physical parameters for estimation,

Model parameter estimation provided updated physical parameters of components as they were
added on, preserving the validity of the previously updated components. The estimation algorithm
incorporated a component mode synthesis solution of the eigenvalue  problem in order to ease the
computational intensity of the algorithm. The previously used Bayesian  estimation technique was
modified to incorporate a line search algorithm that improved convergence time by several orders
of magnitude.

The model updating methodology was developed to be realistically and cost effectively
implemented, The estimation algorithm, LSQI modal expansion, and EMSEE calculation were
performed on a Sun Sparcstation  10 in MATLAB using IMOS functions.

IMOS was then used to synthesize the structural model with optical and control parameters.
Measurements obtained on the MPI testbed demonstrated the accuracy of the integrated model
predictions, thus validating the testing and modeling approach recommended herein for complex
opto-mechanical  structures.
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